Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

نویسندگان

  • Weizhe Edward Liu
  • Ewelina M. Hankiewicz
  • Dimitrie Culcer
چکیده

Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak localization in Ga1-xMnxAs: Evidence of impurity band transport

We report the observation of negative magnetoresistance in the ferromagnetic semiconductor Ga1−xMnxAs, x=0.05–0.08, at low temperatures T 3 K and low magnetic fields 0 B 20 mT . We attribute this effect to weak localization. Observation of weak localization strongly suggests impurity band transport in these materials, since for valence band transport one expects either weak antilocalization due...

متن کامل

Abstract Submitted for the MAR13 Meeting of The American Physical Society Spin-orbit scattering in quantum diffusion of massive Dirac fermions

Submitted for the MAR13 Meeting of The American Physical Society Spin-orbit scattering in quantum diffusion of massive Dirac fermions WENYU SHAN, Wean Hall 6424, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh — We theoretically study the effects of spin-orbit scattering on weak (anti-)localization in two-dimensional massive Dirac systems. We clarify that weak anti-localization and loca...

متن کامل

Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons.

We report low-temperature, magnetotransport measurements of ferrocene-doped Bi(2)Se(3) nanoribbons grown by vapor-liquid-solid method. The Kondo effect, a saturating resistance upturn at low temperatures, is observed in these ribbons to indicate presence of localized impurity spins. Magnetoconductances of the ferrocene-doped ribbons display both weak localization and weak antilocalization, whic...

متن کامل

Spin-orbit coupling, antilocalization, and parallel magnetic fields in quantum dots.

We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localization, consistent with random matrix theory results once orbital coupling of the parallel field is inc...

متن کامل

Crossover between Weak Antilocalization and Weak Localization of Bulk States in Ultrathin Bi2Se3 Films

We report transport studies on the 5 nm thick Bi₂Se₃ topological insulator films which are grown via molecular beam epitaxy technique. The angle-resolved photoemission spectroscopy data show that the Fermi level of the system lies in the bulk conduction band above the Dirac point, suggesting important contribution of bulk states to the transport results. In particular, the crossover from weak a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017